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D E S I G N  A N D  F A B R I C A T I O N   O F  

C O M P O S I T E  W I N G  P A N E L S  

C O N T A I N I N G  A P R O D U C T I O N  

S P L I C E  

D. L. REED 

General Dynamics Corporation 
F o r t  Worth Divis ion 

1.0 SUMMARY 

Join ts   for   bo th   the   upper   and   lower  w.ing surfaces were 
des igned   fo r  a m a j o r   s p l i c e   i n  a graphite-epoxy  wing  of a t r a n s -  
po r t .  The upper  and lower s u r f a c e   j o i n t s  were des igned   for  
representa t ive   compress ion   and   tens ion   loadings   repec t ive ly  
and a 60,000 hour   f a t igue  l i f e .  A s i n g l e   s c a r f ,   b o l t e d   j o i n t  
capable  of  assembly  and  disassembly was s e l e c t e d   f o r   b o t h  
upper  and lower s p l i c e s .  The so l id   l amina te  of t h e   j o i n t s  was 
b lended   i n to  a honeycomb sandwich  of t h e  same th ickness .  

T e s t  specimens  representing a s e c t i o n  of t h e   j o i n t s   w i t h  
a s i n g l e   l i n e  of b o l t s  were f a b r i c a t e d   a n d   t e s t e d   t o   v e r i f y   t h a t  
t h e   d e s i g n   s a t i s f i e d   t h e   s t r e n g t h   a n d   l i f e   r e q u i r e m e n t s .  The 
f a t i g u e  tests were conducted  with a random f l igh t -by - f l i gh t   l oad  
h i s t o r y .  The s ta t ic  tension  and  compression  s t rengths   of   the  
specimens were n e a r l y   i d e n t i c a l   t o   t h e   d e s i g n   s t r e n g t h s .  Ex- 
c e p t   f o r   f a t i g u e  failures of bo l t   heads ,   no   f a t igue  damage 
occur red   i n   10  lifetimes of   fa t igue   loading .   Res idua l   s t rengths  
a f t e r  t h e   f a t i g u e   l o a d i n g  were e s s e n t i a l l y   e q u a l   t o   t h e   o r i g i n a l  
s ta t ic  s t r e n g t h s .  

Two l a r g e  honeycomb p a n e l s   c o n t a i n i n g   t h e   j o i n t s   ( o n e   f o r  
the   upper  surface and  one f o r   t h e  lower) were f a b r i c a t e d   f o r  
t e s t i n g  a t  NASA-Langley Research  Center.  The design  of   these 
panels  was based on t h e  test r e s u l t s   f o r   t h e   j o i n t   s p e c i m e n s  
w i t h   t h e   s i n g l e   l i n e   o f   b o l t s .  



2.0 INTRODUCTION 

The ob jec t ive  of t h i s  program was t o   d e s i g n   a n d   f a b r i c a t e  
an  upper   and lower wing   pane l   conta in ing   chordwise   sp l ices   for  
a nex t   gene ra t ion   t r anspor t  a i rcraf t .  The panels  were t o   b e  
made of  composite materials and   represent   p roduct ion   sp l ices  
capable of disassembly  and  reassembly.  These  panels were t o  be 
des igned   for   bo th  s ta t ic  loading  and a s e r v i c e   f a t i g u e  l i f e  of 
60,000 f l i g h t   h o u r s .   A f t e r   t h e s e  wing spl ice  panels were 
designed  and  fabr icated,   they were t o   b e   d e l i v e r e d   t o  NASA f o r  
f a t i g u e   t e s t i n g  a t  the  Langley  Research  Center.  

A development tes t  program was i n i t i a t e d   t o   d e s i g n   t h e  
wing spl ice  p a n e l s .   I n   t h i s  program s t a t i c   a n d   f a t i g u e  tests 
were conducted on a representa t ive   e lement  of the  upper  and  lower 
spl ice  panels .  The development tes t  program for   these  specimens 
i s  r epor t ed   i n   Sec t ion  3 .O. 

The resul ts   of   the   development  tes t  program were used   t o  
design  the  large  upper  and  lower  wing  panels  containing  the 
product ion   sp l ice .  The design  of   these  panels   and t h e  end 
g r i p s   f o r   m a t i n g   w i t h   t h e  NASA test machine are r e p o r t e d   i n  
Sec t ion  4.0.  

Sect ion  5.0 conta ins  a discussion  of  conclusions  and 
recommendations. 

2 



3 .O DEVELOPMENT TEST PROGRAM 

The development test  program was i n i t i a t e d   t o   g e n e r a t e  
design data for   the   l a rge   pane l   des ign   and   to   uncover   p roblems 
tha t   migh t   be   encoun te red   i n   f ab r i ca t ing   t he   l a rge  wing  panels. 
Because  no  wel l -es tabl ished  fa t igue  design  methodology  exis ted,  
t h e   s p l i c e  was designed f irst  on a s ta t ic  b a s i s .  Then, s ta t ic  
and   f a t igue  tests were conducted on t h e   s t a t i c a l l y   d e s i g n e d  
j o i n t  specimens t o  scale t h e  s ta t ic  d e s i g n s   t o   s a t i s f y   t h e  
r e q u i r e d   l i f e .  A j o i n t  specimen  with a s i n g l e   l i n e  of b o l t s  
was chosen t o   r e p r e s e n t  a typ ica l   e lement   o f   the   l a rge   pane ls .  

This   sec t ion   d i scusses   the   des ign   of   the   deve lopment   jo in t  
spec imens ,   the   fabr ica t ion  of the   spec imens ,   the   fa t igue  tes t  
spectrum,  the  tes t ing  system,  the s ta t ic  tes t  r e s u l t s ,   t h e  
f a t i g u e  tes t  r e s u l t s ,  and a d iscuss ion  of t h e   r e s u l t s  from t h e  
development test  program. 

3.1 SPECIMEN DESIGN 

The design  of  the  development test specimens  involved  the 
design  loads  and a material sys t em as well as a design  concept 
f o r   t h e   j o i n t s .  Each  of t hese  items w i l l  now be  discussed.  

3 . 1 . 1  Design  Loads 

The s t a t i c  limit des ign   loads   for   the   upper   sur face  (com- 
pression)  spl ice  panel were s p e c i f i e d  as 2.627 MN/m (15,000 
pounds/inch)  in  compression  and  1.051 MN/m (6,000  pounds/inch) 
in   t ens ion .  The s ta t ic  limit des ign   loads   for   the  lower su r face  
( t e n s i o n )   s p l i c e   p a n e l  were s p e c i f i e d  as 2.627 MN/m (15,000 
pounds/inch)  in  tension  and  1.051 MN/m (6,000  pounds/inch)  in 
compression. The s t a t i c  u l t ima te   l oad   f ac to r  was s p e c i f i e d  as 
1.5 times t h e  l i m i t  loads.   Thus,   the   ul t imate   design  loads 
were 3 .940  MN/m (22,500  pounds/inch)  in  compression  for  the 
upper   sur face   sp l ice   and  3.940 MN/m (22,500  pounds/inch)  in 
t ens ion   fo r   t he   l ower   su r f ace   sp l i ce .   In   o rde r   t o  ref lect  t h e  
to r s iona l   s t i f fnes s   o f   t he   w ing ,   t he   pane l s  were a l s o   r e q u i r e d  
t o  have a minimum s h e a r   s t i f f n e s s  of G t  = 140.1 MN/m (0.8 x lo6 
pounds/inch),  where G i s  t h e   e f f e c t i v e   s h e a r  modulus  and t i s  
the   e f fec t ive   th ickness   o f   the   pane l .  

The fa t igue   loading   spec t rum is  d i s c u s s e d   i n  a later 
sec t ion .  3 



3.1.2  Design  Concept 

The bas ic   des ign   concept   for   the   wing   pane l   sp l ice  i s  
shown i n   F i g u r e  1. The mating  pieces of t h e  wing  panel are 
j o i n e d   a t  a machined scarf i n t e r f a c e  by mechanica l   fas teners ,  
which are countersunk on the  aerodynamic  surface.  The s i m p l i c i t y  
i n h e r e n t   i n   b o t h   a n a l y s i s   a n d   f a b r i x a t i o n   o f   t h e   b a s i c  spl ice  
makes t h i s   c o n c e p t   e s p e c i a l l y   a t t r a c t i v e .  The so l id   l amina te  
c o n s t r u c t i o n   i n   t h e   s p l i c e  area can  be  blended  into a honeycomb 
sandwich  wing  construction  in  the  bays on e i t h e r   s i d e  of t h e  
splice bay.  Figure 2 shows the   j o in t   spec imen   u sed   i n   t he  
development t es t  program. The honeycomb sandwich was no t  
i n c l u d e d   i n   t h e  t e s t  s e c t i o n  of the  joint   specimen  because 
f a i l u r e  i s  n o t   l i k e l y   t o   o c c u r   i n   t h e   s a n d w i c h .  However, i t  
was inc luded   in   the   ends   o f   the   spec imen  to   deve lop   the   fabr i -  
ca t ion   p rocess   fo r   t he   t r ans i t i on   f rom  so l id   l amina te   t o  honey- 
comb sandwich  and a s  a means of saving   graphi te   mater ia l .  

It should   be   no ted   tha t   an  optimum honeycomb sandwich f o r  
a wing su r face  would l i ke ly   be   t h i cke r   t han   t ha t   de t e rmined  
here  by cons ide r ing   on ly   t he   s t r eng th  of t h e   j o i n t  - especially 
the  upper  (compression) wing sur face .   Thus ,   these   sp l ice   pane ls  
would l i k e l y   h a v e   t o   b e   b l e n d e d   i n t o  a thicker  sandwich  panel 
i n   t h e   a d j a c e n t  wing  bays.   This   t ransi t ion  could  probably  be 
made a t  t h e   r i b s   a d j a c e n t   t o   t h e  bay  containing  the splice. 
Although  the  scope  of  the  present  program  would  not  allow a 
de ta i l ed   s tudy  of  such a t r ans i t i on ,   t he   concep t  i s  f e a s i b l e  
and i s  probably  l ighter   than  one  where  the  thickness   of   the  
j o i n t   p a n e l  would  be  equal t o   t h a t  of   the  adjacent   bay  panels .  

3.1.3 Material 

Thornel  300/5208  graphite-epoxy (a product of Narmco 
Materials of  Costa Mesa, Ca l i fo rn ia )  was chosen   fo r   t h i s   p ro -  
gram  and was purchased in   accordance   wi th   Genera l  Dynamics 
s p e c i f i c a t i o n  FMS-2023 Type 111, Form C .  Table I p resen t s   t he  
b a s i c   l a m i n a   u n i d i r e c t i o n a l   d a t a   t h a t  was used   i n   t he   des ign   o f  
t h e  splice  specimens.   Acceptance tests were conducted on t h e  
graphite-epoxy material when i t  was r e c e i v e d   t o   a s s u r e  t h a t  i t  
met t h e  minimum requirements of t h e   s p e c i f i c a t i o n .  The design 
u l t imate   va lues   p resented   in   Table  I represent   averages  over  
a la rge   h i s tor ica l   da ta   sample   and   thus  were used   i n   t he   des ign .  

4 



Typical   Sect ion  Represented 
by Joint  Specimens 

CHORD 

S e c t i o n  A-A 

Figure  1 Basic Splice  Concept 
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Table I LAMINA UNIDIRECTIONAL PROPERTIES FOR 
THORNEL 300/5208 GRAPHITE MATERIAL 

= 137.2 GPa (19 .9  x 10 p s i )  6 

E2 = 9.65  GPa (1.4 x 10 p s i )  

G12 = 4.48  GPa (0 .65  x 10 p s i )  

6 

6 

V = 0.28  12 

S t r a i n  
Average Ultimate 

Tension 
Longitudinal  
Transverse 

Compression 
Longitudinal  
Transverse 

Shear 

9.317 mm/m ( 9 3 1 7   p i n . / i n - )  
4 .294 m / m  ( 4 2 9 4   p i n . / i n = )  

11.495 mm/m ( 1 1 4 9 5   p i n .   / i n . )  
15.820 mm/m ( 1 5 8 2 0   p i n .   / i n  

15.000 mm/m (15000 p i n . / i n . )  

7 



3.1.4 S p l i c e  Des-ign Method 

The i n i t i a l   a s s u m p t i o n   i n   t h e  spl ice  des ign  was t h a t  a l l  
b o l t s   t r a n s f e r   a n   e q u a l  amount  of  load.  In most metal bo l t ed  
j o i n t s ,   t h i s  ,is achieved  only a f t e r  y ie ld ing   and  a r e d i s t r i b u -  
t i o n  of  load  has  taken place. However, w i t h   c m p o s i t e s ,  i t  i s  
p o s s i b l e   t o   t a i l o r   t h e   l a m i n a t e   i n   t h e   j o i n t   t o   r e s u l t   i n   e q u a l  
bo l t   loads .   S t ra in   matching   techniques  were u s e d   t o   a s s u r e  
equa l   bo l t   l oads .  

The s t rength  design  of   the  laminate  a t  each   bo l t   l oca t ion  
was based on a f r a c t u r e  model. The a p p l i c a b i l i t y  of c l a s s i c a l  
fracture  mechanics  to  the  loaded  or  unloaded  hole  problem was 
developed  in   Reference 1 and j u s t i f i e d   i n   R e f e r e n c e  2 .  T h i s  
model  depends on a f rac ture   hypothes is   which  s ta tes  t h a t  a 
th reshold  volume  of material mus t   be   s t r e s sed   t o  a c r i t i c a l  
l eve l   be fo re   f r ac tu re   deve lops .   Th i s   t h re sho ld  volume  of 
material is  cha rac t e r i zed  by the  dimension "a" and i s  c a l l e d   a n  
in tense   energy   reg ion   in   Reference  1. The dimension "a" i s  
determined  through tests of  open  and  loaded  holes. A t y p i c a l  
bo l t ed   j o in t   e l emen t  ( i .e.  an  element  of t h e  j o i n t   c o n t a i n i n g  
only  one  hole  with a bearing  load  and a load   be ing   t ransfer red  
past t h e  hole  i n  t h e  plate)  was obtained by superposi t ion  of  
a n  open  hole ( a l l  load   t r ans fe r r ed  past hole)  and a loaded 
hole  ( a l l  l o a d   i n  plate  taken  out a t  h o l e ) .  A width   cor rec t ion  
f a c t o r  i s  a l s o   p a r t   o f  t h e  model .   This   bo l ted   jo in t   s t rength  
model  had  been programmed f o r  a mini-computer  and  used t o  pre-  
d i c t  t h e  f a i l u r e   s t r e n g t h s   f o r   b o t h  boron-epoxy  and  graphite- 
epoxy laminates .   For  a data  sampling  of 101 poin ts   conta in ing  
open,  loaded  and  combined  loadings  in  boron-epoxy  laminates, 
t h e  average tes t  f a i l u r e   d i v i d e d  by p r e d i c t e d   f a i l u r e  was 
1.000. I n  65 graphi te-epoxy  laminates ,   the   average tes t  
f a i l u r e   t o   p r e d i c t e d   f a i l u r e   r a t i o  was 1.075.  These test  
poin ts   cover  a range  of  hole  diameters  from 0.381 mm (0.015 
inches)  to 2.54  cm (1 .OO inch)  and a range  of  laminates  from 
0 t o  70 percent   0 -degree   f iber   conten t   (Reference  2 ) .  

The des ign   p rocedure   fo r   t he   t ens ion   sp l i ce  began w i t h  
u s ing   t he   s t r eng th  model t o   o b t a i n   a n  optimum d e s i g n   f o r   t h e  
laminates a t  the  thin  and  thick  ends  of  t h e  scarf. An assumed 
number of bo l t s   and  t h e  a s sumed   equa l   bo l t   l oad   d i s t r ibu t ion  
was used   i n   do ing   t h i s .  Once the   th ickness   o f   the   scar f  a t  
these  two l o c a t i o n s  had  been  determined,   the   overal l   spl ice  
thickness  i s  simply  the sum of   these two  numbers. The sca r f  
angle  i s  determined  from  the number o f   b o l t s   a l o n g   t h e   s p l i c e ,  
the   p rev ious ly ,de te rmined   th ickness   o f   the  scarf a t  t h e   t h i c k  



and  thin  end,  and a bo l t   spac ing  of fou r  times t h e   b o l t   d i a -  
meter. Several   designs were evaluated;   each had a d i f f e r e n t  
number of b o l t s   ( t h e  minimum number of b o l t s  i s  determined 
by t h e   l o a d   t o   b e   t r a n s f e r r e d   a n d   t h e   s i n g l e   s h e a r   c a p a c i t y  of 
t h e   b o l t s ) .  The des ign   chosen   fo r   t he   t ens ion   sp l i ce  was a 
seven-bol t   configurat ion  because  of  minimum weight   considerat ions.  
As t h e  splice reg ion   lengthens ,   the   pane l   weight   increases  
because  of   the  sol id   laminate   region.  

The f i n a l  s t e p  i n   t h e   s p l i c e   d e s i g n  was the   de te rmina t ion  
of   the  laminate  a t  each   in te rmedia te   bo l t   loca t ion .  The i d e a l  
s i t u a t i o n  from a manufacturing  point  of view  would probably 
be a l i nea r   va r i a t ion   f rom  the   l amina te  modulus a t  t h e   t h i n  end 
of t h e   s c a r f   t o   t h e  modulus a t  t h e   t h i c k  end o f . t h e   s c a r f .  Using 
t h e  cr i ter ia  t h a t   t h e   s t r a i n   l e v e l   b e   e q u a l   i n   t h e   u p p e r   a n d  
lower   par t s   o f   the   sp l ice  ( a t  the  mid-point  between  each  bolt) ,  
t h e  laminate modulus  (and  therefore   the  ply  or ientat ions)  was 
de termined   to   approximate   the   l inear   var ia t ion .  The cri teria 
of   equal   s t ra in   in   the  upper   and  lower parts of t h e   j o i n t  
l eads   t o   t he   fo l lowing   r e l a t ionsh ip ,  

where, i = it,h pos i t ion   be tween  bo l t s ,  N = number of b o l t s ,  
Eu-   EL^ = laminate  modulus in   t he   uppe r   and   l ower   pa r t s  a t  t h e  
i d ' p o s i t i o n ,   r e s p e c t i v e l y ,   a n d  tui, t = laminate   thickness  
in   the   upper   and   lower   par t s  a t  t h e   i & p o s i t i o n ,   r e s p e c t i v e l y .  
T h i s   r e l a t i o n s h i p  was used  to  determine  the  laminate  moduli   along 
t h e  s c a r f .  The equat ion was u s e d   i n   a n   i t e r a t i v e   f a s h i o n   t o  
approach a l i nea r   va r i a t ion   i n   l amina te   modu lus .  The s t r e n g t h  
model was then  used t o  see i f   a n   a d e q u a t e   m r g i n  was a t t a i n e d  
a t  each b o l t   l o c a t i o n .   I n  a l l  cases the   resu l t ing   margins  were 
adequate  and  thus  the  design was completed. The tens ion  spl ice  
design is  shown i n   F i g u r e  3 .  

The same design  procedure  (using t h e  s t r e n g t h  model) as 
tha t   ou t l i ned   above   fo r   t he   t ens ion  splice was used f o r  t h e  
design of the   compress ion   sp l ice .  The compression  spl ice  
design is  shown i n   F i g u r e  4 .  Because  of  compression  buckling, 
t h e  minimum nymber of f i v e   b o l t s   ( r e s u l t i n g   i n   t h e   t h i c k e s t  
j o i n t )  was u s e d   i n   t h i s   d e s i g n .  
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PERCENT 0 25 30 35 38 40 46  50 
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(195 layers)  

F igure  3 Tension  Splice  Design 
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tTOTAL = 31.45mm  (1.238 inches) 5 BOLTS - 6.35mm (0.25 inches) 

(225 layers)  

Figure 4 Compression Splice  Design 



Lll 1ll11 

3 J . 5  S p l i c e  Test Specimens 

The d e t a i l s  of the  compression  and  tension  spl ice  test  
specimens are shown i n   F i g u r e s  5 and 6 ,  r e s p e c t i v e l y .  The 
des ign   requi rements   for   the  f u l l  panels  were a r i b  and  spar  
spacing of 0 .762  m (30  inches)  and 1 .473  m (58  inches)  , res- 
p e c t i v e l y .   S i n c e   t h e   s p l i c e   r e g i o n  is  t h e  c r i t i ca l  design 
po r t ion  of t h e  test specimens  and i n   a n   e f f o r t   t o   r e d u c e   t h e  
amount  of graphi te   mater ia l   used   in   the   spec imens ,   the   spec imens  
were shortened fo r  the  development test  program  and  do  not  repre- 
s e n t  one   t ranspor t  a i r c ra f t  r i b   s p a c i n g   i n   l e n g t h .   F i b e r g l a s s  
blocks (see F igures  5 and 6)  were used i n   t h e  end   gr ip   reg ion  
to   p reven t   c rush ing  when the  specimens were i n s t a l l e d   i n   t h e  
t es t  f i x t u r e s .  

A buckling  check  of  the  compression  development test  
specimen was made us ing   the   f in i te   e lement   p rogram NASTRAN. 
Simulating  the  specimen as  a pinned-end  column, a buckling  load 
of 87.198 kN (19603 pounds) o r  0 . 8 7 1  times u l t ima te   l oad  was 
p r e d i c t e d   f o r   b u c k l i n g   i n   t h e   t h i c k n e s s   d i r e c t i o n .   S i m i l a r l y ,  
f o r  a f ixed  end  column, a buckling  load  of 512.164 kN (115,139 
pounds) o r  5.117 times ultimate load was p red ic t ed .   S ince   t he  
end f i x i t y   o f   t h e  t es t  apparatus  was somewhat g rea t e r   t han   t he  
pinned-end  condition, i t  was d e c i d e d   t h a t   n o   e x t e r n a l   r e s t r a i n t s  

. would be   r equ i r ed   t o   p reven t   buck l ing   i n   t he   t h i ckness   d i r ec t ion  
mode. 

A buckling  check was a l s o  made f o r   s i d e   b u c k l i n g  of t h e  
test  s.pecimens. A buckling  load of 50.830 kN (11,427 pounds) 
o r  0.508 times ultimate Zoad was p r e d i c t e d   f o r  a pinned-end 
column.   Since  this   buckl ing  load was so  low, i t  was decided 
t o  use  aluminum s i d e  p l a t e s   t o   i n c r e a s e   t h e   s i d e   b u c k l i n g   l o a d .  
Wi th   t he   s ide   p l a t e s   added   t o   t he   s imu la t ion ,  a buckling  load 
of 221.321 kN (49,755 pounds) o r  2 .211  times u l t ima te   l oad  was 
predic ted  . 

Twenty tension  and  twenty  compression  splice  specimens were 
f a b r i c a t e d   f o r  s t a t i c  a n d   f a t i g u e   t e s t i n g .  

3 . 1 . 6  Skin  Specimens 

S i n c e   t h e   l a r g e   s p l i c e   p a n e l s  w i l l  con ta in  a sandwich  con- 
s t r u c t i o n   s e c t i o n ,  t es t  specimens  representat ive  of   the  skin 
laminate were f a b r i c a t e d .  The d e t a i l s  of   these test  specimens 
are shown i n   F i g u r e  5 .  Twenty  of these  specimens were f a b r i -  
c a t e d   f o r  s ta t ic  and   f a t igue   t e s t ing .  
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3.2 SPECIMEN  FABRICATION 

The spl ice   specimens were manufactured i n  wide  panels 
(approximately 0.5588 m ( 2 2  inches))  and  then cut i n t o   t h e  20 
individual  specimens ( 2 . 5 4  c m  (one   inch)   wide) .   In   o rder   to  
reduce   the  amount of  hand  layup,  the  numerically  controlled 
tape-laying  machine was used t o   l a y   t h e  sandwich  skins  and 
large  sublaminates   which recur th roughou t   t he   j o in t .  Then, 
these   sublaminate   shee ts  were c u t   i n t o   t h e   r e q u i r e d  sizes and 
hand l a id ,   beg inn ing   w i th   one   su r f ace   and   con t inu ing   t o   t he  
o t h e r  surface. 

Because the   l amina tes  were d i f f e ren t   fo r   each   p i ece   o f   t he  
jo in t ,   t he   j o in t   cou ld   no t   be   ' l a id -up  as a cont inuous  par t   and 
la ter  b e   c u t   a p a r t  a t  t h e  splice l i n e .  Thus,   the  sublaminate 
s h e e t s  were but ted   toge ther   a long   the  scarf angle .  After  t h e  
f i r s t   h a l f  of t h e   j o i n t   p a n e l  was reached,   the   core  material 
and   the   p recured   f iberg lass   end   b locks  (see Figures  5 and 6 )  
were added.   Next ,   the   top  half   of   the   joint   panel  was l a i d  
up and   t he   en t i r e   pane l   cu red   i n  a s ing le   ope ra t ion .  

The t ape red   f i be rg la s s  end g r i p s  (see Figures  5 and 6 )  
were l a i d  up  and  cured  separately  and  then were bonded t o   t h e  
prev ious ly   cured   la rge   pane l .  

The wide  panels were then sawed i n t o   t h e  2.54 c m  (one  inch)  
wide  tension  and  compression spl ice  specimens  and,  the  sides  of 
the  specimens were machined  smooth.  Next,  each  specimen was 
c u t  apart  a long   the   scar f   l ine ,   and   the   scar f   sur faces  were 
machined t o  make a good mating  surface.  The su r faces  of t h e  
f i b e r g l a s s  end g r i p s  were a l s o  machined paral le l  t o   t h e  
spec imen  faces .   F ina l ly ,   the  two halves of the  specimens 
were clamped toge the r ,   and   t he   ho le s   fo r   t he   bo l t s  were d r i l l e d ,  
reamed,  and  countersunk  one a t  a time. Hole  clearances similar 
t o  what  would  be  used f o r  metal s t r u c t u r e  were used   fo r   t hese  
holes .   Af te r   each   ho le  was f i n i s h e d ,  a b o l t  was i n s e r t e d   t o  
hold  the  specimen  together   while   the  remaining  holes  were being 
d r i l l e d .  

A problem  occurred  during  the  fabr icat ion  of   the  tension 
spl ice  specimens  that   required a r e p a i r .  A sheet  of  mylar 
( u s e d   t o   l a y   t h e   g r a p h i t e  on during  the  lay-up  operat ion)  was 
l e f t   i n   t h e   l a m i n a t e  of  one-half  of  the  panel..   After  the  panel 
had  been sawed i n t o   t h e  2.54  cm (one  inch)  widths  and  the scarf 
ang le  had  been c u t ,  a l l  t h e  pieces from t h a t   h a l f  of the   pane l  
were found to   de l amina te  a t  the  mylar .  The delamination  extended 
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f rom  the  scarfed end  back t o   t h e  honeycomb c o r e  a t  a depth  of a 
about   one-fourth  the  thickness .  

I n   o r d e r   t o   d e v e l o p  a repa i r   p rocedure ,  a small panel   wi th  
a layer   o f   mylar   in   the   l amina te  was fab r i ca t ed   and   cu t   i n to '  
several   p ieces .   The.   delaminated  surfaces  were inspec ted   and   the  
mylar  was found t o  have   d i f fused   in to   the   g raphi te .   Four   o f  
t he   p i eces  were then  rebonded  using  two  types  of  adhesives  and 
two degrees  of  sanding. Clamps were used   t o   app ly   p re s su re  
dur ing   the   cure   cyc le .   Hor izonta l   shear  tests of   the   repa i red  
laminates   indicated  that   thorough  sanding  and a commonly used 
shee t   adhes ive   r e s to red   t he   o r ig ina l   l amina te   s t r eng th .  A s  an  
a d d i t i o n a l   a i d   i n   i n s u r i n g  a good r e p a i r ,   t h r e e   6 . 3 5  mm (0.25 
inches )   bo l t s  were placed  through  each  repaired piece between 
t h e  spl ice  r eg ion   and   t he   f i be rg la s s  end g r i p   r e g i o n .  A l l  t h e  
delaminated spl ice  pieces were r epa i r ed   u s ing   t h i s   p rocedure .  
F igure  7 i s  a photograph  of a tens ion   ( seven   bo l t s )   and  a com- 
p res s ion   ( f ive   bo l t s )   spec imen .  

3 .2 .1   Nondestruct ive  Test ing 

After   each  wide  panel  was cured   and   before   the   f iberg lass  
end g r i p s  were bonded i n  place, the   pane ls  were u l t r a s o n i c a l l y  
inspec ted .  The r e s u l t s  of t h e   i n s p e c t i o n  were not   conc lus ive  
because of t h e   l a r g e   t h i c k n e s s  of the  panels   and t h e  presence  of 
t he  aluminum core   and   f i be rg la s s .  The inspect ion  did,   however ,  
i n d i c a t e  a s ign i f i can t   d i f f e rence   i n   t r ansmiss ion   be tween   t he  
two halves   of   the   wide  tension  panel .   This   difference was 
caused by the   my la r   f i lm   t ha t  was l e f t   i n   t h e   l a m i n a t e .  

3 . 3  FATIGUE  SPECTRUM GENERATION 

A f l i g h t - b y - f l i g h t  random load  sequence was generated  from 
a gust  load-exceedance  and a ground-air-ground (GAG) cyc le  
s p e c i f i e d  by NASA. For  a t r a n s p o r t   a i r c r a f t ,   g u s t   l o a d s   a n d  
t h e  GAG cyc les  are the  primary  source  of  fatigue  loadings.  The 
f a t i g u e   l i f e t i m e   f o r   s u c h  a s t r u c t u r e  was s p e c i f i e d   t o   c o n -  
sist  of  30,000,  2-hour f l i g h t s   f o r  a t o t a l   l i f e  of 60,000 hours.  

The gust  load-exceedance  curve  provided by NASA is  shown 
i n   F i g u r e  8. The exceedance  data i s  p l o t t e d  as occurrences  per 
1000 f l i g h t   h o u r s   v e r s u s  (PA/pM)2 where, PA = a l t e r n a t i n g   l o a d  
and PM = mean load. The maximum va lue   o f   a l t e rna t ing   l oad  i s  
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Figure 7 Tension and Compression  Joint  Specimens 
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PA/PM = 1.5. From p rev ious   expe r i ence   w i th   r andm  load   f l i gh t  
s imula t ions ,  a spectrum  of  approximately  500,000  loads  has  been 
found  adequate   for   f l igh t   s imula t ion .  The lower (PA/PM)~  end 
of  the  exceedance  curve was b r o u g h t   i n t o   t h e   v e r t i c a l   a x i s  a t  
approximately  3300  posit ive  slope  crossings p e r  1000 hours 
in s t ead  of an   i nd ica t ed   h ighe r  l e v e l .  This   reduces  the number 
of low l o a d s   i n   t h e   s p e c t r u m   i n   o r d e r   t o   a r r i v e  a t  approximately 
500 ,000   l oads   fo r   t he   f a t igue   l i f e t ime   h i s to ry .  

The s t r a i g h t   l i n e   i n   F i g u r e  8 r ep resen t s  a Gaussian  process 
w i t h   t h e  same end  point.  Any s t r a i g h t   l i n e  w i t h  t h e  same end 
point   could  have  been  used  in   the  fol lowing  process .  The curved 
NASA load-exceedance  curve i s  s imula ted   wi th   th i s   Gauss ian  
exceedance  curve t o   a r r i v e  a t  t h e  random load  sequence.  Then, 
t h e  Gaussian  loads are t ransformed  to   the  real loads by means 
of a mapping func t ion   curve   (F igure  9 ) .  The mapping func t ion  
i s  obtained  from  Figure 8 by picking  off  corresponding  points 
(same  occurrence  level) on . t h e  real and  Gaussian  spectra. The 
mapping func t ion  was assumed t o  be  the same f o r   b o t h   p o s i t i v e  
and  negative  deviations  from  the mean load ( i .e .  equal  chance 
of gust   causing + o r  - change  from mean load) .  

The maximum and minimum l o a d s   f o r   t h e  GAG cyc les  were 
s p e c i f i e d  as P t o  - 1 /2  PM for  the  lower  wing  surface  and 
-PM t o  1/2 PM yor   the   upper  wi’ng sur face .  One GAG cycle was 
s p e c i f i e d   f o r   e a c h   f l i g h t .  

An average mean load (pM) for   the   spec t rum was determined 
using pM = A PM, where, A takes   into  account   fuel   burn  and FM 
was s p e c i f i e d  as 1.051 MN/m (6000  pounds/inch).  For a t y p i c a l  
advanced   t r anspor t   a i r c ra f t   w i th  a gross  weight  of  1.2366 MN 
(278,000  pounds), a fue l   l oad  of 0.4003 MN (90,000 pounds), 
and a 25 pe rcen t   fue l   r e se rve ,   t he  maximum burn   for  a f l i g h t  
i s  0.3003 MN (67,500  pounds)  or 0.1501 MN (33,750  pounds) a t  
mid-fl ight.   Thus,  Ais 

and,   the   average mean load i s  

PM = 0.88 * 1.051 = 0.925 MN/m (5280  pounds/inch). 

Using  the  Gaussian  exceedance  l ine  in  Figure 8 and  the 
mapping f u n c t i o n   i n   F i g u r e  9 ,  a random load   h i s to ry  was generated 
u s i n g   t h e   d i g i t a l  computer  procedure in   Reference   3 .   F igure  10 
shows the  input   spectrum (same fo r   pos i t i ve   and   nega t ive   l oads )  
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and  the   spec t rum  ca lcu la ted   for   the  random load   h i s to ry .  The 
curves show that t h e  random load   s imula t ion   accu ra t e ly   r ep resen t s  
the  input   spectrum. The  computed  random load   h i s to ry  ( i .e.  one 
lifetime or 30,000, 2 hour random load   f l i gh t s )   con ta ined  448,780 
loads ,  was s t o r e d  on magnetic  tape  and was used   t o   conduc t   t he  
f a t i g u e  tests. This   t ape  was used   fo r   bo th   t he   t ens ion  and com- 
press ion  tests, wi th  a s i g n   r e v e r s a l  on the  loads.   With a max- 
i m u m  test  f a c i l i t y   f r e q u e n c y  of 5 cycles  per  second  and 0.1 sec- 
onds fo r   each  GAG load,  one lifetime on t h e  test tape   requi red  
17.3 hours of real test t i m e .  The average  frequency was 3.61 
cycles   per   second.   Figure 11 shows one  of t h e   f l i g h t s  from t h e  
random load   h i s to ry .  

3 .4 LABORATORY TEST EQUIPMENT 

The labora tory  test  equipment  consisted  of a load   cont ro l  
system tha t   p roduces   the  random load   s igna l   and  test  f i x t u r e s  
( including  loading rams) that  hold  the  specimens  and  apply  the 
loads .  A schematic  of  the tes t  equipment i s  shown i n   F i g u r e  12. 

3 -4.1 Load Control  System 

A photograph  of  the  load  control sys t em which was designed 
a n d   b u i l t  by t h e   F o r t  Worth D i v i s i o n   f o r   f a t i g u e   t e s t i n g  i s  shown i n  
F igu re  13.  This   computer -cont ro l led   sys tem  u t i l i zes  a Varian 
620-i   general   purpose  digi ta l   computer ,  a magnet ic   tape  reader  
and a t e l e t y p e w r i t e r .  A unique  program for   the  Varian  computer  
has   been  developed  to   control  t h e  load  f ixtures   f rom  data  
suppl ied  by the   magnet ic   t ape   un i t .  The computer  generates 
t he   l oad - t ime   h i s to ry   s igna l   fo r   t he   s e rvo   con t ro l   sys t em.  
The servo  control   system i s  a t y p i c a l  sys t em cons is t ing   o f  
se rvo   va lve ,   se rvo   cont ro l le r ,   hydraul ic   source ,   hydraul ic  ram 
and  load ce l l  to   p rovide   the   feedback   s igna l .  

3.4.2 Test F ix tu res  

F ive  test f i x t u r e s  were f a b r i c a t e d   f o r   t h e  s t a t i c  and 
f a t i g u e  tests of t h e   s p l i c e  test  specimens.  Figure 14 shows 
one  of  the  compression test specimens i n s t a l l e d   i n  one  of  the 
load ing   f i x tu re s .  Each of   the  test  f i x t u r e s  was con t ro l l ed  
wi th  separate load  control  systems  from a single  computer 
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genera ted   s igna l .  The loads were introduced  through  bol ted,  
s e r r a t e d  steel p l a t e s  a t  each  end  of  the  specimen. The specimen 
was a t t ached  to  the   l oad  c e l l  by a steel  clevis t o  minimize  loads 
caused  by  misalignment.  This  load ce l l  provides  the  feedback 
s i g n a l   t o   c l o s e   t h e   t e s t i n g   l o o p .  Aluminum s i d e  plates were 
used to   s tab i l ize   the   compress ion   spec imens   dur ing   tes t ing .  
These were not  required  for  the  tension  specimens  even  though 
compression  loads  occurred  during  the GAG cyc le s .  

3.5 STATIC TEST RESULTS  FOR  JOINTS 

Of t h e  20 tension  and 20 compression splice specimens, 5 
specimens  from  each set were a l l o c a t e d   f o r  s ta t ic  u l t i m a t e  tests. 
In   o rde r   t o   de t e rmine  i f  t h e   b o l t s  were being  loaded  uniformly 
as assumed,  one  of the  specimens was coated  with a pho toe la s t i c  
material. F igures  15 and  16 show t h e   f r i n g e   p a t t e r n s   i n  corn- 
pression  and  tension on opposi te   faces   of   the  test  specimen. 
The un i fo rmi ty   o f   t hese   pa t t e rns   i nd ica t e   t ha t   t he   bo l t s  were 
being  loaded  uniformly  and  serves as a qua l i t a t ive   check  on 
the  design  and  fabrication  of  the  specimens.  Because  of  end 
g r i p  problems  and  system  malfunctions, two tension  and two com- 
pression  specimens were l o s t .  

3.5.1 End G r i p  Problems 

Figure  1 7  shows t h a t  a compression  specimen  that   failed 
p rema tu re ly   i n   t he   end   g r ip   r eg ion   a t   93 .4  kN (21,000  pounds) 
compression. The f a i l u r e   i n i t i a t e d  a t  t h e   f r o n t  end  of t h e   s o l i d  
f i b e r g l a s s   b l o c k .   I n   t h i s   f i r s t  t es t ,  the   g r ips   ex tended  beyond 
the   f i be rg la s s   b lock   and   t he   co re  was crushed.   In   the  second 
tes t ,  when t h e  end  of t h e   g r i p s  were p laced   exac t ly  a t  the  end 
of t he   f i be rg la s s   b lock ,   t he   spec imen   f a i l ed   s imi l a r ly  a t  87.2 kN 
(19,600  pounds)  compression. A tension  specimen  which was 
t e s t e d   n e x t   f a i l e d  a t  85.4 kN (19,200 pounds)  tension.  Figure 
18 shows t h a t   t h i s   f a i l u r e   a l s o   i n i t i a t e d  a t  the  f ront   edge  of  
t he   f i be rg la s s   b lock .  A t  t h i s   p o i n t  i t  became obvious  that  
t h e   f i b e r g l a s s   b l o c k  was t r a n s f e r r i n g  a s i g n i f i c a n t  amount  of 
load  and  causing a large stress concent ra t ion  a t  t h e   f r o n t  
edge of t he   b lock .   In  f irst  a t t e m p t i n g   t o   a l l e v i a t e   t h e   p r o -  
blem, a p in  was put   th rough  the   end   gr ip   in   the   core   reg ion .  
The end  gr ips  were then  placed on the   p in   and  a load   appl ied  
b e f o r e   t h e  end g r i p s  were t i g h t e n e d .   T h i s   i n   e f f e c t   t a k e s  a 
po r t ion  of the  load  around  the  problem area. The u n f a i l e d  
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Figure 15 Compression  Specimen  Under  Compression Load 

Figure 16 Compression  Specimen  Under  Tension Load 
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pieces  of two previous  compression  specimens were pu t  t oge the r  
and  loaded i n   t h e  manner j u s t   d e s c r i b e d .   F a i l u r e   o c c u r r e d   i n  
the  same p lace  a t  106.8 kN (24,000  pounds)  compEssion. 

S ince   th i s   f ix   on ly   bypassed   the   p roblem area and  did  not  
solve  the  problem,  an  attempt was  made t o  release the   f2be rg la s s  
b lock   f rom  the   g raphi te   sk ins .  I f  t h i s   c o u l d   b e   e f f e c t e d ,   t h e  
f i b e r g l a s s  would act  only as a spacer   for   the   end   gr ips .   This  
was t h e   o r i g i n a l   i n t e n t  of t h e   f i b e r g l a s s   b l o c k .  As a means of 
accompl ish ing   th i s ,  saw cuts were made a long   t he   i n t e r f ace   o f  
t he   f i be rg la s s   b lock   and   t he   g raph i t e   sk ins .  A th in   p iece   o f  
t e f l o n   w i t h  a l a y e r  of te f lon   impregnated   g lass   c lo th  on each 
s i d e  was t h e n   i n s e r t e d   i n t o   t h e  two saw c u t s .  The f r i c t i o n l e s s  
t e f l o n - t o - t e f l o n  surfaces reduces  the  load  transfer  and  hence 
t h e  stress concen t r a t ion .   Th i s   f i x  was made on the   un fa i l ed  
end  of a compression  specimen. The g r a p h i t e  was then   cu t   o f f  
squa re   j u s t   sho r t   o f   t he   s ca r f   and   t e s t ed   i n   compress ion .  
Fa i lure   occur red  a t  105.9 kN (23,800  pounds)  compression i n  a 
s p l i t t i n g  mode. The remaining  specimens were f i x e d  by 
i n s t a l l i n g   t h e   t e f l o n   i n s e r t s .  However, t o   f u r t h e r   i n s u r e  
a g a i n s t  end g r i p   f a i l u r e s ,   f o u r   b o l t s  were placed  through  the 
co re  area to   shea r   t he   l oad   f rom  the   g raph i t e   t o  t h e  f i b e r g l a s s  
end g r i p s .  

3.5.2  Tension 

During  the s ta t ic  tests, the  re la t ive  displacement   between 
t h e  two pieces   of   the  splice specimen was recorded  with a c l i p  
gage.  Figure 19 shows a t y p i c a l  curve  obtained  from a tens ion  
splice specimen. I n   g e n e r a l   t h e  f i r s t  l a r g e   d i s c o n t i n u i t y  was 
c a l l e d   f a i l u r e .  If a specimen  did  not f a i l  c a t a s t r o p h i c a l l y  
a t  t h e   f i r s t  large d i s c o n t i n u i t y   i n   t h e   c u r v e ,   t h e   p o i n t  of 
d i scon t inu i ty  was c a l l e d   f a i l u r e .  A t y p i c a l  s t a t i c  f a i l u r e  of 
a tens ion  splice specimen i s  s h a m   i n   F i g u r e  20. 

The i n i t i a l  s t a t i c  s t r e n g t h s  of t h e  t h r e e   s t a t i c   t e n s i o n  
specimens are shown i n  Table 11, The Weibull  shape (a,) and 
scale (Po) parameters f o r   t h e s e   t h r e e  tests are 60 and  102.8 kN 
(23,100  pounds),   respectively.  A mean s t r eng th   o f  101.9 kN 
(22,900  pounds) f o r   t h e   t h r e e  tests compares  favorably w i t h  t he  
design  ul t imate   load  of  100.1 kN (22,500  pounds). The high 

s u f f i c i e n t   t o   a c c u r a t e l y  estimate the  shape  parameter.  % i nd ica t e s   ve ry  low scatter a l though   t h ree  tests are not  
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Figure 20 S t a t i c  Tension F a i l u r e  



Table I1 STATIC  TEST  RESULTS 
FOR J O I N T  SPECIMENS 

Tens ion   S t a t i c  
- ..~ St reng th ,  kN ( l b s . )  

100.1 (22 ,500)  
102.3 (23 ,000)  
103.2 (23 ,200)  

Compression S ta t ic  
S t r eng th ,  kN ( l b s . )  

99.6 (22 ,400)  
100.5 (22 ,600)  
101.4 (22 ,800)  

&O 

Bo 

= 60 01 = 109 

= 102.8 kN (23,100 pounds) = 101.0 kN (22 ,700 pounds) 
6 

Bo 

a = Weibull  Shape  Parameter 

= Weibull Scale Parameter 
0 

80 

33 

." 



. . . . . - - 

3.5.3 Compression 

The relat ive  displacement   between  the two pieces of   the 
j o i n t  was also  monitored  during  the  compression tests. F igure  
2 1  shows a typical   load  versus   displacement   curve.  The f irst  
successful  compression  specimen tes t  was t a k e n   t o  a loading  of 
134.3 kN (30,200 pounds) o r  1.34 times des ign   u l t ima te .  The 
load c e l l  be ing   u sed   i n   t he  t es t  f i x t u r e  was on ly   ca l ib ra t ed  
t o  133.4 kN (30,000 pounds) s o  loading was h a l t e d  a t  t h i s  
p o i n t .   S i n c e   t h i s   l o a d   l e v e l  was nea r   t he   shea r   capac i ty  of 
t h e   b o l t s ,  i t  was a n t i c i p a t e d   t h a t   t h e   u l t i m a t e   f a i l u r e  of  the 
j o i n t  would be  complete  shearing  of a l l  b o l t s .  An inspec t ion  
of t he   l oad   de f l ec t ion   p lo t   (F igu re  2 1 )  i nd ica t ed  a s i g n i f i c a n t  
slope  change a t  100.5 kN (22,600 pounds). The specimen was 
removed  from t h e  test f i x t u r e  and  the  holes   inspected.   Figure 
22 shows s p l i t t i n g   c r a c k s   i n   f r o n t  of  and  behind  the  end  bolt 
i n   t h e   l o a d   d i r e c t i o n .   S i n c e   s p l i t t i n g  was t h e  c r i t i ca l  
f a i l u r e  mode, f a i l u r e  was def ined as the   load  a t  the  change  in  
s lope .  

The s t a t i c  compression  strengths  (based on s i g n i f i c a n t  
s lope  change  in  t h e  load  displacement  curves) are  shown i n  Table 
11. The Weibull  shape  and scale parameters a r e  109 and 101.0 
kN (22,700 pounds) ,   respect ively.  A mean compression  s t rength 
of 100.1 kN (22,500 pounds). The high shape parameter again 
ind ica t e s   ve ry  low scatter i n   t h e   d a t a .  

3.6 FATIGUE TEST RESULTS FOR JOINTS 

One of  the  purposes of the  development t es t  program was t o  
de t e rmine   t he   r e l a t ionsh ip   be tween   s t r e s s   and   l i f e   fo r   t he   j o in t .  
Thus, i n   t h e   f i r s t  series of tests,  the  magnitudes  of  the  loads 
i n  t h e  real  spectrum were mul t ip l i ed  by a f a c t o r  of 1.3636 to 
c a u s e   s h o r t   f a t i g u e   l i v e s .  However, f a t i g u e   f a i l u r e s   d i d   n o t  
occur,  and  the  specimens were s t a t i c a l l y   t e s t e d   a f t e r   f o u r   l i f e -  
times. The magnitude  of  the  loads  in  the real  spectrum were then 
mul t ip l i ed  by a f a c t o r  of 1.7727 f o r   t h e   n e x t  series of tes ts ,  
a n d   f a t i g u e   f a i l u r e s   o c c u r r e d   i n  less than 1.1 l i f e t i m e s .  The 
r e s idua l   s t r eng ths   and   f a t igue   l i ves  from these  two series of 
tests were used t o  estimate parameters for the  wearout model" 
which was t h e n   u s e d   t o   p r e d i c t   f a t i g u e   l i v e s   f o r  t h e  real  
spectrum. Tests were run   wi th   the   rea l   spec t rum  to  10 l i f e t i m e s ,  
which was much less than   the  433 l i f e t i m e   p r e d i c t i o n ,   t o   d e t e r -  
mine t h e   e f f e c t  of t h e  real  f a t i g u e  spectrum on r e s i d u a l   s t r e n g t h .  
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F i g u r e  22 S p l i t t i n g   F a i l u r e  Mode i n   S t a t i c   C o m p r e s s i o n  Specimen 



I n   o r d e r   t o   f u r t h e r  test the  "wearout  model," tests were r u n   f o r  
up t o   e i g h t   l i f e t i m e s   w i t h  a magnified  spectrum  that was predic ted  
t o   c a u s e   f a t i g u e   f a i l u r e s   i n   e i g h t   l i f e t i m e s .  

3.6.1 Magnified  Spectra 

The magnification  of  the  loading  spectrum was performed i n  
t h e  test labora tory   and  results i n  a scale-up  of a l l  l o a d s   i n  
the  spectrum (see Figure  8) .   Thus,   th is   magnif icat ion  produces 
l a r g e r   l o a d   r e v e r s a l s   f o r   t h e  GAG load cycles. 

3.6.1.1 Magnification - ,  Fac to r  of 1.3636 

Five  tension  and  five  compression  specimens were f a t i g u e  
t e s t e d   w i t h  a magnified spectrum i n  which  the  magnitude  of a l l  
t h e   l o a d s   i n   t h e  real  spectrum were mul t ip l i ed  by a f a c t o r  of 
1.3636. This   fac tor  raises t h e  maximum load   ( l imi t   l oad )   i n  
t h e  real spectrum  to  80 percent   of   the   design  ul t imate   load 
or  80.1 W (18,080  pounds). The maximum load was reached 
approximately  s ix  times p e r  a i r c r a f t   l i f e t i m e .   T h r e e   t e n s i o n  
specimens  and  four  compression  specimens were f a t i g u e   t e s t e d  
t o   f o u r   l i f e t i m e s   w i t h o u t  a f a t i g u e   f a i l u r e .  These  specimens 
vere t h e n   s t a t i c a l l y   t e s t e d   t o  measure   res idua l   s t rength .  Two 
tension  specimens  and  one  compression  specimen were l o s t   d u r i n g  
t h e   f a t i g u e  tests due t o  s y s t e m  malfunctions.  A l s o ,  the  heads 
of many of  the  countersunk NAS 1154   t i t an ium  bo l t s   f a i l ed   i n  
f a t igue   du r ing   t he  tests. The fa i lures   occur red  a t  t h e   i n t e r -  
s e c t i o n  of the  head  and  shank  where  the  net  area was s i g n i f i c a n t l y  
reduced by the  deep recess i n   t h e  head. A change  from  titanium 
t o  steel  bol ts   helped  but   did  not   e l iminate   the  problem. The 
problem was f i n a l l y   s o l v e d  by swi tch ing   to  NAS 584  "Hi-Torque" 
steel  b o l t s  which  had a shallow recess tha t   d id   no t   ex t end  
in to   t he   shank   o f   t he   bo l t .  

The r e s i d u a l   s t r e n g t h   r e s u l t s  are  g iven   in   Table  111. The 
da ta  shows t h a t   f o u r  lifetimes of   the 1.3636 magnified spec t rum 
had a very small e f f e c t  on t h e  mean s ta t ic  s t r e n g t h   o f   t h e   j o i n t  
specimens. The r e s i d u a l   s t r e n g t h  tests were again  monitored 
with a c l i p  gage  measuring  relative  displacement  between  the 
spl ice  parts. The resul t ing  load-displacement   curves  were very 
similar t o   t h o s e   o b t a i n e d   i n   t h e   i n i t i a l  s t a t i c  s t r e n g t h  tests 
and f a i l u r e  was a s s i g n e d   t o   t h e   i n i t i a l   l a r g e   d i s c o n t i n u i t y   i n  
the   curves .   L ikewise ,   the   comple te   fa i lure   o f   the   t ens ion  
res idua l   s t rength   spec imens  were very similar t o   t h e   i n i t i a l  
s t a t i c  tension  specimens (see Figure  20). 
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Table 111 

TENSION 

Residual  Strength 
at 4.0 Lifetimes, kN (lbs.) 
Magnification 
Factor = 1.3636 

96 .1   (21 ,600)  
99.2  (22,300) 
105.9  (23 , 800)  

FATIGUE  TEST RESULTS FOR  JOINT SPECIMENS 

Fatigue  Failure 
(Lifetimes) 
Magnification 
Factor = 1.7727 

0.465 
0.625 
0.670 
0 . 854 
1.107 

a = 3.10 

8, = 0.835 
f 

COMPRESSION 

Residual  Strength Fatigue  Failure 
at 4.0 Lifetimes, kN (lbs.) (Lifetimes) 
Magnification Magnification 
Factor = 1.3636 Factor = 1.7727 

94.3  (21,200) 

97.9  (22,000)  
97.0  (21,800)  

101.0 (22 ,700)  

0.254 
0.460 
0.530 
0 . 603 
0.633 

01 = 2.67 

B f  = 0.568 

f 

01 = Weibull  Shape  Parameter 

Pf = Weibull  Scale  Parameter 
f 



3.6.1.2  Magnification  Factor  of 1.7727 

Five  tension  and  five  compression  specimens were f a t i g u e  
t e s t e d   w i t h  a magnified  spectrum  in  which  the  magnitude  of a l l  
t h e , l o a d s   i n   t h e  real spectrum were mult ipl ied  by a f a c t o r  of 
1.7727 (1.3 x 1.3636). The spectrum was t runca ted  a t  a maximum 
load  of 80 percent  of ultimate o r  80.1 kN (18,000 pounds), i .e .  
a l l  l o a d s   t h a t  would  have  exceeded t h e  maximum load  were reduced 
t o   t h e  maximum load .   In   the   resu l t ing   spec t rum,   the  maximum 
load was reached  approximately  150 times per  lifetime. F igure  
23 shows a load-time trace of  the  1.3636  and 1.7727 magnified 
spectra. The i n c r e a s e   i n   s e v e r i t y   w i t h   m a g n i f i c a t i o n   f a c t o r  i s  
apparent .  

The five,   tension  specimens were t e s t e d   f i r s t .  Two specimens 
f a i l e d   c a t a s t r o p h i c a l l y  a t  0.465  and  0.670  lifetimes. One of 
these  fa i led  specimens i s  shown in   F igure   24 .  The tests of t h e  
three  remaining  specimens were con t inued   un t i l  0.854 l i f e t i m e s  
when t h e  test monitor  heard a bol t   snap  in   one  of   the  specimens.  
Th i s   pa r t i cu la r  test was stopped  and  the  specimen  inspected. 
Two b o l t s  were found to   be  broken  and a l l  t h e   b o l t   h o l e s   i n   t h e  
specimen were damaged.  The two broken-bolt   holes were elongated 
by  approximately 10 percent .   Thus ,   the   bo l t s   p robably   b roke   in  
bending   fa t igue   due   to   the   excess ive   c learances .   F igure  25 
shows an  X-ray  radiograph  of  the two broken-bol t   holes   in   each 
p a r t  of t he   sp l i ce ,   v i ewed   f run   t he   i nne r   su r f aces .  The e x t e n t  
of t h e   f a t i g u e  damage i s  ind ica t ed  by the   dark  areas around  the 
holes .  The dark  areas were made by applying  an  opaque  l iquid 
d i e   ( t e t r ab romoe thane )   t o   t he  damaged area around  the   bo l t   ho les  
p r i o r   t o  X-raying  the  specimen. The l i qu id   d i e   p ropaga ted   i n to  
the  cracks  and  delaminat ions by capi l la ry  ac t ion ,   caus ing   t he  
damaged areas t o  show up as dark  zones.  This NDE method i s  
d e s c r i b e d   i n  more d e t a i l   i n   R e f e r e n c e   4 .  The specimen was con- 
s i d e r e d   t o   b e   f a i l e d   a n d   t h e  test  terminated a t  th i s   po in t   be -  
cause  of   the  large amount  of damage. Based on these  observa-  
t ions ,   fa t igue   fa i lure   o f   the   remain ing   spec imens   ( tens ion   and  
compression) was set a t  f i r s t   b o l t   f a i l u r e .   T e s t i n g  of t h e  
las t  two tension  specimens was con t inued   and   t he   f a t igue   l i f e -  
times f o r  f i r s t  b o l t   f a i l u r e  are g iven   in   Table  111. The broken 
b o l t s  were r e p l a c e d   i n   t h e s e  l as t  two specimens  and  testing was 
continued. The j o i n t s   e v e n t u a l l y   f a i l e d   i n   n e t   t e n s i o n  a t  a n  
average lifetime of  approximately  40  percent  longer  than  the 
time t o  f i rs t  b o l t   f a i l u r e .   F i g u r e  26  shows one  of  these las t  
two specimens a f te r  f i n a l  fa i lure .  It should  be  noted  that  
t h e  40 p e r c e n t   d i f f e r e n c e   i n   l i f e  between f i r s t   b o l t   a n d   f i n a l  
f a i l u r e  was obtained  with  the  highly  magnified  spectrum  (1.7727). 
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Figure  24 Tens ion   Fa t igue   Fa i lure  a t  0.465 Lifet imes 
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Figure 26 Tension  Fatigue  Failure at 0.862 Lifetimes 



Next, f i v e  compression  specimens were t e s t e d .  After f irst  
b a l t   f a i l u r e ,   s e v e r a l  of the  specimens were i n s p e c t e d   f o r  damage 
around  the   ,ho les .   These   inspec t ions   ind ica ted   tha t   the  same 
f a i l u r e  mechanism was present   in   bo th   the   t ens ion   and   compress ion  
specimens.   Thus,   the   compression  l i fe t imes  reported  in   Table  I11 
are f o r  f irst  b o l t   f a i l u r e .  The r e s u l t s  show t h a t   t h e   l i f e   t o  
f i rs t  b o l t  fa i lure  of the  tension  specimens i s  about  50 percent  
g rea t e r   t han  that of the  compression  specimens. 

3.6.1.3 Magnif ica t ion   for  Eight- L i f e t i m e  

Two tension  and  one  compression  specimen were f a t i g u e   t e s t e d  
with  magnified spectra i n  which  the  magnitude  of a l l  the   loads  
i n   t h e  real  spectrum were mul t ip l i ed  by f a c t o r s  of 1.4258 f o r  

! tension  and 1.3765 f o r  compression. The magni f ica t ion   fac tors  
I were c a l c u l a t e d   f o r  a mean l i f e  of e i g h t  lifetimes us ing   t he  
, wearout model d i scussed   i n   Sec t ion  3.6.3.  The spectra were 

t runca ted  a t  a maximum load  of 80 percent   of   design  ul t imate .  

The compression  fatigue test  was stopped a t  8 l i f e t i m e s .  
Bo l t   f a i lu re s   i nd ica t ive   o f   bea r ing  damage occurred a t  4.024,  
6.437,  6.599 and 7.351 l i f e t i m e s .  A t  t h e   f i r s t   b o l t   f a i l u r e  
(4 .024 l i fe t imes)   the  specimen was taken apart  and   i n spec ted   fo r  
damage. Some bearing damage was v i s ib l e   and   t he   ho le s  had  been 
elongated  about 3 t o  4 percent .  However, based on t h e  f i r s t  
break as f a i l u r e  cr i ter ia ,  t h e   l i f e  of  the  specimen was 4.024 
l i f e t i m e s   o r   a b o u t  50 percent  of  the  expected mean l i f e .  Each 
of   the  broken  bol ts  was replaced  and  the test con t inued   t o  8 
l i f e t i m e s .  The specimens was inspec ted   aga in   and   the   bo l t   ho les  
had elongated 5 t o  6 percent .  The specimen was s ta t ic  t e s t e d  
t o  fa i lure  i n  compression. A nonl inear   po in t   occur red   in   the  
load-def lec t ion   curve  a t  102.3 kN (23,000 pounds). The specimen 
f a i l e d   i n   t h e  end g r ip   r eg ion  a t  117.0 kN (26 ,300 pounds). One 
of  the  tension  specimens was l o s t  a t  3.844 lifetimes when the  
feedback   s igna l   f rom  the   load  ce l l  was a c c i d e n t l y   i n t e r r u p t e d .  
A maximum load  of 108.4 kN (24,380 pounds) was. recorded a t  
f a i l u r e .  Two bolt   heads had f a i l e d  ear l ier  a t  3.177 and 
3.580 l i f e t i m e s ;  however, t he   ho le s  were inspec ted  a t  3.580 l i f e -  
times and  no  appreciable   bear ing damage was found. The tes t  
of   the  other   tension  specimen was stopped a t  4.010 lifetimes when 
one of the   bo l t s   b roke   due   t o   bea r ing  damage i n   t h e   h o l e .  The 
specimen was a l so   c r acked   l ong i tud ina l ly .   F igu re  27 shows 
the  crack  in   the  specimen  and  the damage around  the  holes  a t  
t h e   t h i n  end  of  each  splice piece. The broken  bol t  was replaced 
and  the.  test c o n t i n u e d .   F i n a l   f a i l u r e  of the  specimen  occurred 
a t  6.049 lifetimes. 
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S i d e  V i e w  Showing Longi tudina l   Crack  

Thin End Countersunk  Hole - V i e w  From I n s i d e   S c a r f  

Thin End Hole - V i e w  From I n s i d e   S c a r f  

F i g u r e  27 Tens ion   Sp l i ce  Damage a t  4.010 Lifetimes 
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3.6.2 Real Spectrum 

One tension  and  one  compression  specimen were f a t i g u e   t e s t e d  
t o  10 l i f e t i m e s   w i t h   t h e  real  spectrum  loading  and  then were 
s t a t i c a l l y   t e s t e d   t o  measure   res idua l   s t rength .  The b o l t s   i n  
the  tension  specimen  (checked  per iodical ly)   lost  no torque  and 
no b o l t  problems  of  any  type  occurred  through  the 10 l i f e t i m e s  
o f   f a t i g u e   t e s t i n g .  Also, no bear ing damage was found i n   t h e  
b o l t   h o l e s  upon inspec t ion   a f t e r   t he   t e s t ed   conc luded .   Dur ing  
t h e  s ta t ic  r e s i d u a l   s t r e n g t h  tes t ,  n o n l i n e a r i t i e s   o c c u r r e d   i n  
the   l oad -de f l ec t ion   cu rve  a t  74.7 kN (16 ,800 pounds)  and a t  
90.7 kN (20,400 p o u n d s )   b e f o r e   f i n a l   f a i l u r e  a t  100.1 kN (22,500 
pounds) . During  the  compression  real   spectrum tes t ,  s e v e r a l  
b o l t  heads   o r   nu ts   c racked   of f ;   however ,   no   bo l t s   fa i led   in  t h e  
shank  and  no  bearing damage was found  around  the  holes upon 
inspec t ion  a t  t h e  end  of t h e  test .  During  the s t a t i c  r e s i d u a l  
s t r e n g t h  test a nonl inear   po in t   occur red   in   the   load-def lec t ion  
curve a t  102.8 kN (23 ,100 pounds )   be fo re   f i na l   f a i lu re  a t  128.6 
kN (28,900 pounds) i n   t h e  end g r ip   r eg ion  of the  specimen. 

3.6.3 Wearout Model 

The wearout model of  References 5 and 6 was used  to   analyze 
the  magnified spectra f a t i g u e  and r e s i d u a l   s t r e n g t h   d a t a  i n  Tables 
11 and I11 and t o   p r e d i c t   t h e   l i f e   u n d e r   t h e  real  spectrum. 
This  model relates t h e   r e s i d u a l   s t r e n g t h   a n d   f a t i g u e   l i f e t i m e  
d i s t r ibu t ions   t h rough  a k ine t ic   f rac ture   hypothes is   based  on 
the  assumptions  that  a l l  materials i n  a s t r u c t u r e   c o n t a i n  p r e -  
e x i s t i n g   f l a w s   a n d   t h a t   f a i l u r e  i s  caused by a r e d u c t i o n   i n  
s t r e n g t h  due t o  t h e  growth  of  these  flaws.  These  flaws were 
assumed t o  grow i n  a d e t e r m i n i s t i c  manner  depending  upon t h e  
material s ta te  and i t s  environmental   h is tory.  A discuss ion  of 
t he   i npu t   pa rame te r s   fo r   t h i s  model fol lows.  

Estimates  of t h e  shape parameter 01 and scale parameter 8, 
f o r  t h e  Weibul l   d i s t r ibu t ion  are  given ?n Table I1 f o r  t h e  
t ens ion   and   compress ion   i n i t i a l   s t a t i c   s t r eng th   da t a .  The shape 
parameters CY a re   p robab ly   l a rge r   t han   t ha t  commonly reported 
f o r   f i b e r   c o z t r o l l e d   l a m i n a t e s  ( i .e.  cyo approximately 3 0 )  
because of t he  small number of test  points.   Thus,   an CY,, of 30 
was used i n  t h e  wearout  model as a conse rva t ive   e s t ima te   fo r  
both  tension  and  compression  data sets.  The shape af and scale 
8, parameters   for   the  fa t igue  l i fe t imes  under   the  magnif ied 
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spectra are g iven   i n   Tab le  111. Because  the scale parameters uf  
were nearly  equal   and  because  the same fai lure  mechanism was 
act ive  in   both  the  tension  and  compression  specimens,  a da ta  
pooling  technique was used  to   determine  an?  for   the combined 
tens ion   and   compress ion   da ta .   In   th i s   t echnique ,   each  of t he  
f ive  tension  and  compression lifetime da ta   po in ts  was divided 
by Bf for   the   t ens ion   and   compress ion  lifetimes, r e spec t ive ly .  
The r e s u l t i n g  10 da ta   po in t  were then  used  with a leas t - squares  
technique   to  estimate an  af of 3 . 3 6 .  The crack  growth rate 
exponent r i n   t h e   w e a r o u t  model i s  given by 

Q O  r =  
Qf 

+ 1  

= ( r n . 3 6 )  30 + 1 

r = 5 . 4 6 .  

With t h i s   b a s i c   i n p u t   d a t a  ( a o , B  and r ) ,  the  wearout model was 
used t o  p roduce   r e s idua l   s t r eng tg   ( l oad )   ve r sus   f a t igue   l i f e -  
time p lo t s .   F igu res  28 and 29  show t h e s e   p l o t s   f o r   t h e   t e n s i o n  
and  compression  specimen  data,  respectively. The r e s i d u a l  
s t rength   curves   ( i . e .   p robabi l i ty   o f   surv iva l   curves)  were 
calculated  using  the  wearout  model f o r   b o t h   t h e  1.3636 and 
1 .7727  magnified spectra. 

The wearout   model   can  a lso  be  used  to   predict   the  effects  
of  load  level  changes  through  use  of  the  load  magnification 
parameter AI: 

8f = B  (Al) 2r real  fAl 

where &rea i s  t h e  scale parameter f o r   t h e  real  spectrum  with 
a load  magnlfication  parameter A 1  of 1.0. Fo r   t he   t ens ion   da t a  
setA1 = 1.7727, PfA = 0.835 and r = 5 . 4 6 ,  thus  

1 

Pf = 0 .835  (1 .7727)  10.92 
real  

B = 433 l i f e t i m e s .  f rea l  
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Therefore ,   under   the real  tension  fa t igue  spectrum  with  no  load 
magnif icat ion (i.e. maximum load   in   spec t rum  equal   to  limit load) ,  
the  wearout model p r e d i c t s  a f a t i g u e  l i f e  scale parameter of 433 
lifetimes. S imi l a r ly ,   fo r   t he   compress ion   da t a  se t ,  the  wearout 
model p r e d i c t s  a f a t i g u e  l i f e  scale parameter  of 295 lifetimes 
under   the real compression  fatigue  spectrum.  Thus,   the  long 
l i f e  charac te r i s t ics   o f   composi te   l amina tes   have   been   t ransfer red  
t o   t h e  spl ice  concept.  

The wearout model was a l s o   u s e d  to predic t   magni f ica t ion  
f a c t o r s   t h a t  would g i v e  a mean l i f e  of 8 l i f e t i m e s   f o r   t h e   t e n -  
sion  and  compression  splice  specimens.  The mean (;) f o r   t h e  
Weibul l   d i s t r ibu t ion  i s  given by 

1 where,  f i s  t h e  gamma funct ion  and ( af -k 1 ) i s  i t s  argument. 
For  af = 3 . 3 6  and = 8 ,  

Bf = 8 / r ( m  1 + 1) 

Thus, f o r  t h e   t e n s i o n   d a t a ,   t h e  

A1 - - 
Pf rea 1 

BfA 1 

1 
2r 
- 

1 
A 1 =  (F) 10 .92  

A1 = 1.4258 , 

magni f i ca t ion   f ac to r  A 1  i s  

and  for  the  compression  data 
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1 
10.92 

*1 

*1 = 1.3765 

These   magn i f i ca t ion   f ac to r s  were used f o r  t h e   e i g h t  lifetime 
tests d i s c u s s e d   i n   S e c t i o n  3.6.1.3. 

3.7 STATIC AND FATIGUE  TEST  RESULTS 
FOR SKIN SPECIMENS 

S t a t i c   a n d   f a t i g u e  tests were conducted  on [(O/(+45)2)2]s 
l amina te   spec imens   tha t   represented   the   sandwich   sk ins   in   the  
joint   specimens.   These  skin  specimens (see F i g u r e  30) were 
2.54 c m  (1 inch)  x 22.86 c m  (9 inches)  x 20 p l i e s  (see F i g u r e  
5 ) .  They were t e s t e d   i n   b o t h   t e n s i o n   a n d   c o m p r e s s i o n   f o r   f o u r  
lifetimes w i t h   t h e   s p e c t r u m   d e s c r i b e d   i n   S e c t i o n  3 . 3 .  

Several  specimens were t e s t e d   i n   t e n s i o n   t o   d e t e r m i n e   t h e  
i n i t i a l  s t a t i c  s t r e n g t h  of the  laminate .   Five  specimens were 
t h e n   f a t i g u e   t e s t e d   u n d e r   t h e   t e n s i o n  random  load  spectrum  with 
a maximum f a t i g u e   l o a d   o f  76 percent   o f  s t a t i c  u l t i m a t e .  After  
four lifetimes, t h e   a v e r a g e   r e s i d u a l   s t r e n g t h   o f   t h e   f i v e  
specimens was t h r e e   p e r c e n t   h i g h e r   t h a n   t h e   o r i g i n a l  s t a t i c  
t e n s i o n   s t r e n g t h .  Aluminum s i d e   s u p p o r t   p l a t e s  were used t o  
s t a b i l i z e   t h e   s p e c i m e n s   d u r i n g   t h e  GAG compress ion   load   cyc les .  

Five  specimens were a l s o   s t a r t e d   i n   t e s t i n g   u n d e r  a com- 
p res s ion   f a t igue   spec t rum  wi th  a maximum compression  load of 
76 percent  of t h e  s ta t ic  t e n s i l e  ultimate. After seve ra l   end  
g r i p   f a i l u r e s ,   t h e  maximum spectrum  load was reduced t o   j u s t  
be low  the   l amina   t r ansve r se   compress ion   f a i lu re   l oad   fo r   t he  
lamina te .  A t  t h i s   l o a d   l e v e l ,   f o u r  lifetimes o f   f a t i g u e  were 
obta ined  on f ive   spec imens   wi thout   any  fa i lures .  Res idua l  
compress ive   s t rength  tests could  not   be  conducted  on  these 
specimens  because  of   their   very low b u c k l i n g   s t r e n g t h .  

51 



Figure 30 Sandwich  Skin  Specimens 



3.8 DISCUSSIONS 

The Pf of t h e  real  spectrum was p red ic t ed  by the  wearout 
model t o  be  433 lifetimes f o r   t h e   t e n s i o n   s p l i c e .  Assuming 
af = 3.36 ,   the   p robabi l i ty   o f   surv iva l  a t  one lifetime i s  

P = 0.999 999 998 6 

Now, because   t h i s   de t a i l ?   (one   l i ne   o f   bo l t s   i n  t h e  t o t a l  wing 
splice) would  be repeated  approximately 60 times i n  a 1.524m 
(60  inch)   chord  wing,   the   probabi l i ty   of   survival   for   the 
t o t a l  splice i s  

'splice = 0.999 999 916. 

Thus ,   the   p robabi l i ty  of s u r v i v a l   o f   t h e   t o t a l  wing splice a t  
one  l i fe t ime  under   the real  l i m i t  load  spectrum is  qu i t e   h igh .  

Another aspect of t h e  test  r e s u l t s   r e v e a l s   t h e   r e l a t i o n -  
ship  between l i m i t  and  ul t imate   design stress o r  load   leve ls .  
S ince   t he   l oad   magn i f i ca t ion   f ac to r  of 1.3636  only raised t h e  
peak  load t o  80.1 kN (18,000 pounds)  and  did  not  truncate  any 
loads ,  l e t  us  assume, f o r   t h e  moment, that   80.1 kN (18,000 
pounds) is  the   des ign  l i m i t  load   leve l .  Now, s i n c e   t h e  splice 
was designed  to  an u l t imate   load   of  100.1 kN (22,500  pounds), 
t h e   f a c t o r  of safety r e l a t i n g  limit and  ul t imate   load becomes 

Fac to r  of s a f e t y  = 100.1 
80.1 

Fac to r  of s a f e t y  = 1.25. 

For  the  1.3636  magnification factor cu rves   i n   F igu re  28, i t  may 
be   observed   tha t   the  splice element  has  an  adequate  fatigue 
l i f e  ( > l o  lifetimes) and a t  1.0 lifetime t h e   r e s i d u a l   s t r e n g t h  
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l i n e s  are e s s e n t i a l l y   f l a t .   T h i s   l i n e  of  reasoning  leads  one 
t o   t h e   c o n c l u s i o n   t h a t  a 1.5 f a c t o r  of s a f e t y  (a carry-over 
from metallic design) may b e   t o o   l a r g e   f o r   t h i s   s p l i c e   e l e m e n t .  
A more realist ic approach  would  be t o  set t h i s   o v e r l o a d   f a c t o r  
as t h e   l o a d   r a t i o   d e r i v e d  from a once  per f leet  lifetime g u s t .  

The d i scuss ion   cou ld   a l so   be  viewed  from the  overload 
design  procedure  out l ined  in   Reference 7.  Aga in   r e fe r r ing   t o  
t h e  1.3636 magnif icat ion  factor   curves   of   Figure 2 8 ,  t h e   s p l i c e  
specimen  has a 0.9 p r o b a b i l i t y  of survival   of   an  overload  of  
93.4 kN (21,000 pounds) o r  93 percent   o f   u l t imate  a t  1.0 l i f e -  
t i m e .  Wi th   r e s idua l   s t r eng th   da t a   and   f a t igue  lifetime da ta  a t  
two o r  more l eve l s   t he   en t i r e   des ign   p rocedure  as o u t l i n e d   i n  
Reference 7 could  be  implemented. 

The real spectrum  (peak  load=limit   load)  tension  and com- 
pression  long term tests have shown t h a t  no damage of t he  
specimen  occurred  during  ten  l ifetimes of t e s t i n g .  The r e s i d u a l  
s t rength   (based  on f irst  nonl inear   po in t )   o f   the   t ens ion  speci- 
men was reduced  however,  but s t i l l  remained  considerably  above 
l i m i t  load.  The compression  specimen  retained a r e s i d u a l  
s t rength   above   u l t imate   load .  

The e i g h t  lifetime magnified  tension  and  compression 
specimens  both  failed  below  the  predicted mean l i f e  by approxi- 
mately a fac tor   o f  two. S ince   the  af i s  3.36 ,  t hese  tests are 
well within  the  expected scatter. 

For  comparative  purposes,  an  equivalent  aluminum  splice 
was designed  for  s ta t ic  loads  only  with  the same design  concept 
as t h e  graphite  tension  specimen. Based on 2024-T851 aluminum 
p r o p e r t i e s ,   t h e  s ta t ic  metal design  weighed  the same as the  
g raph i t e  spl ice  design.  A f a t i g u e   a n a l y s i s  of t h e  aluminum sp l ice  
r e s u l t e d   i n  a pred ic ted  lifetime of approximately one f o r   s t r a i g h t  
bolts and two l i f e t i m e s   f o r  Taper-Lok f a s t ene r s .   Th i s  compares 
t o  t h e  433 lifetimes predic ted  by t h e  wearout  model (see Sec t ion  
3.6 .3)  and t h e  proven   ten   l i fe t imes  of test  i n   t h e   l o n g  term tes t  
desc r ibed   i n   Sec t ion  3.6.2 f o r   t h e   g r a p h i t e  splice.  
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4 .O LARGE PANEL  DESIGN AND FABRICATION 

The development test  program showed that the   des ign   of   the  
spl ice   region  provided  adequate  s ta t ic  s t r e n g t h   a n d   f a t i g u e   l i f e .  
Thus ,   the   sp l ice   reg ion  was not   changed   for   the   l a rge   pane l  
design. However, changes were made i n   t h e   t r a n s i c i o n a l   r e g i o n  
a t  the  beginning of the  sandwich  construct ion  and  in   the end 
gr ip   region  in   order   to   e l iminate   problems  that   developed  in  
t h e  tests and   dur ing   fabr ica t ion .  

4.1 PANEL  DESIGN 

Drawings  of the   f ina l   des ign   for   the   upper   and   lower  wing 
s k i n  splice panels are  shown in   F igu res  31 through 34. The 
specimen  length  between  f iberglass  end-tab  regions i s  0.762 m 
(30 inches) ; t hus ,  i t  i s  t y p i c a l  of t h e   r i b   s p a c i n g  on an  
a d v a n c e d   t r a n s p o r t   a i r c r a f t .   I n   o r d e r   t o   e l i m i n a t e  some of 
the  problems  encountered w i t h  t h e   b o l t s   u s e d   i n   t h e  ear l ier  
development tests,  t h e  "Hi-Torque'' s teel  b o l t s  (see Sec t ion  
3.6.1.1) wi th  a h i g h e r   h e a t - t r e a t  were s p e c i f i e d .  

I n   t h e  development t es t  spec imens ,   the   re la t ive ly  low 
modulus laminate a t  t h e   t h i n  end of t h e  splice was extended 
i n t o   t h e   s k i n s   o f  t h e  honeycomb sandwich  and i n t o   t h e   g r i p  
region  of  the  specimen.  Since  the modulus  of t h i s   l amina te  
would  probably  be  lower  than  that   for  an  adjacent  panel,  some 
of t h e  5 5  degree   p l i e s  were dropped i n   t h e   o u t e r   s k i n   r e g i o n s  
and  replaced  with 0 degree pl ies  i n   o r d e r   t o   o b t a i n  a n  approxi- 
ma te ly  50 percent  0 and 50 percent 9 5  degree   l amina te   for   the  
sandwich  skins. The t r a n s i t i o n   i n   t h e   s k i n   l a m i n a t e  was made 
i n   t h e  same region as t h e   t r a n s i t i o n   f r o m   s o l i d   l a m i n a t e   t o  
sandwich  construction. 

The t r a n s i t i o n  from sol id   laminate   to   sandwich  caused  the 
surface  to   be  uneven  in   the  development  tes t  specimens  because 
too  many p l i e s  were stopped a t  a s t e p   ( i . e .  as many as 11 p l i e s  
i n  1.524 c m  (0.6  inch)  long steps). F o r   t h e   l a r g e  splice panels ,  
only  four  p l i e s  were s topped   i n  1.016 c m  (0.4 inch)  long steps.  
This   change  lengthened  the  t ransi t ion  region by approximately 
5.08 cm (2.0  inch) ,   and  thus  reduced  the  load  t ransfer   ra te .  To 
f u r t h e r  smooth 
p l i e s  ( i 4 5 )  of 
aluminuii  core. 
a t  the  ends  of 

o u t   t h e   s u r f a c e ,  a wrap l a y e r   c o n s i s t i n g  of two 
g r a p h i t e  were l a id   ove r   bo th   s ides  of  the  tapered 

These plies a l so   r educe   t he  stress concent ra t ion  
t h e  steps. To p reven t   end   g r ip   f a i lu re s   t ha t  
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Figure 31 Upper Panel  Design 
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F i g u r e  32 Upper Panel Design   (Shee t  2) 
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Figure 35 Layup Showing Core Details 
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f i r s t   o c c u r r e d   i n   t h e  development tests (Sec t ion  3.5.1), t h e  
s o l i d   f i b e r g l a s s   b l o c k  was r e p l a c e d   w i t h   i n t e r m i t t e n t   s t r i p s  
o f   f i be rg la s s  (see Figure  3 1 ) .  

The steel  end ang le s  of  Figures 31 and 33 were made t o  
a t t a c h   t h e   l a r g e   p a n e l s   t o   t h e  NASA test machine. The angles  
were des igned   by   matching   the   s t ra in   in   the  steel. between  the 
two l i n e s  of b o l t s   w i t h   t h e   s t r a i n   i n   t h e   f i b e r g l a s s  end  tabs 
and t h e  s t r a i n   i n   t h e   g r a p h i t e  sandwich  faces. A low stress 
l e v e l  was used i n   t h e  steel  des ign   t o   ensu re  a f a t i g u e  l i f e  of 
10 l i f e t i m e s .  The s t a t i c  des ign   load   for   the   end   gr ip   reg ion  
was two times limit load.  

4 . 2 PANEL  FABRICATION 

During  the  course  of t h e  program, t h e   c o n t r a c t  was modified 
to   p rovide  NASA-LRC wi th  t e n  tension  and  ten  compression  specimens 
similar t o   t h o s e  of the  development test  program.  These  specimens 
were 2 . 5 4  cm (1.0 inch)  wide  (one row of  bolts)   and of t he  same 
d e t a i l  geometry as t h e  30.48 c m  ( 1 2  inch)   wide  large  panels .  To 
minimize  costs,  extra  wide  tension  and  compression  panels were 
made and  then  s imply  cut   into 10, 2 .54  c m  (1.0 inch)  specimens 
and  one, 30.48 cm ( 1 2  inch)  wide  specimen  each. 

Bas i ca l ly   t he   l a rge   pane l s  were f a b r i c a t e d  similar t o   t h e  
development t es t  specimens. The numer ica l ly   cont ro l led  tape 
laying  machine was used t o   l a y   l a r g e  sheets of   mult iple   ply 
o r i en ta t ions .   These   l a rge   shee t s  were then   pre-b led   to  compact 
the   l ayers   and  remove  most  of t h e  excess  epoxy  that  i s  normally 
removed during a curing  operat ion.  These sheets ,   which were 
not   cured by the   p re-b leeding   cyc le ,  were t h e n   c u t   i n t o   t h e  
requi red   s ize   and  number of pieces. Only  one  end  of a panel was 
assembled  and  cured a t  a time rather than   bo th   p i eces   a s   i n  t h e  
case  of the  development  joint   specimens.   Figure 35 shows one- 
half   of t h e  g r a p h i t e   s h e e t s ,   t h e  aluminum core,   and t h e  f i b e r g l a s s  
s t r ips  (pre-cured  and  machined)  in  the  curing  tool.  A shee t  
of  adhesive was placed  between  the  core   and  the +45 degree  wrap 
layers on each   s ide .  The th ree   wh i t e  s t r ips  aloKg  the  length 
of the  panel   and  across  t h e  panel a t  the   t apered  end  of t he   co re  
a r e  where the   core  has been f i l l e d  w i t h  a p o t t i n g  compound ( see  
F igure  3 5 ) .  The core  was f i l l e d  w i t h  p o t t i n g  compound i n   t h e s e  
a reas   t o   p reven t   t he   co re   f rom  be ing   c rushed   du r ing   f i na l   cu re .  
During f i n a l   c u r e  of   the first p a r t  of a wide  panel,   the  core 
crushed  and was pushed  back  along  the  length  of  the  panel,  
causing a depres s ion   i n   t he   ou te r   su r f ace .   Po t t ing   t he   co re   d id  
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not   completely  e l iminate   the  depression.   Figure 36 shows a 
completed  assembly  before  curing.  After  curing,  pre-cured 
f ibe rg la s s   end   t abs  were bonded t o   b o t h   s i d e s  of t he   pane l   i n  
t h e   g r i p  area and  the  panel  was c u t   i n t o  specimen  and  panel 
widths.   Figure 37 shows a 30.48 c m  (12.0 inch)  wide  panel  and 
10, 2.54 c m  (1.0 inch)  wide  specimens  that were cut from  one 
of  the  wide  panels.  Next,  the  sides  of  the  specimens,  the  scarf 
su r f aces ,   and   t he   f i be rg la s s  end  tabs were machined. The 
specimen  halves were then  clamped  together,   the  holes were 
d r i l l e d  and  countersunk,  and  the  bolts were i n s t a l l e d .   F i g u r e  
38 shows a completed  tension  and  compression  joint  specimen. 

The steel  angles  were next  clamped i n   p l a c e  on t h e  30.48 
c m  (12 inch)  wide  panels  and  the two  rows  of 1.905 c m  (0.75 inch)  
holes   d r i l l ed   th rough  the   en t i re   assembly .  A f ac ing   cu t  was 
made a c r o s s   t h e  end  of the  assembly  to   ensure  that   the   back  of  
the   angles  were pe rpend icu la r   t o   t he   su r f ace  of t h e   g r a p h i t e  
panel.  Holes were then   d r i l l ed   i n   t he   ou t s t and ing   l egs   o f   t he  
a n g l e s   f o r   a t t a c h i n g   t h e   p a n e l s   i n   t h e  NASA test machine. 
Figure 39 through 42 show views of both  sides  of  the  completed 
tension  and  compression  panels,   respectively.  
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Figure 36 Completed  Layup  Before  Cure 



F i g u r e  37 Large  Panel   and  Specimens  Cut   From Blank 



F i g u r e  38 Completed Test Specimens 





F i g u r e  40 T e n s i o n   S p l i c e   P a n e l  - I n n e r  Surface 



Figure 41 Compression Sp l i ce  Panel - Outer  Surface 
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Figure  42 Compression S p l i c e  Panel  - Inner   Sur face  



5.0 CONCLUSIONS AND RECOMMENDATIONS 

The conclusions  and  recommendations  derived  from  this  pro- 
gram are summarized i n   t h i s   s e c t i o n .  

5.1 CONCLUSIONS 

1. 

2. 

3 .  

4 .  

5. 

6. 

7. 

8. 

1. 

2.  

A s i n g l e   s c a r f   b o l t e d   j o i n t  i s  a viable   design  concept  
f o r  an advanced  transport  composite-to-composite wing s p l i c e .  

A small number of test specimens  can  be  used t o   e f f e c t i v e l y  
screen  design  concepts .  

The small data  base  can  be  strengthened by r e l a t i n g  i t  t o  
a large  data   base  f rom  previous  tes t ing.  

The s ta t ic  design of a bo l ted   jo in t   can   be   based  on f r a c t u r e  
mechanics  concepts. 

The wearout model was found to   adequa te ly   r ep resen t  t h e  
b o l t e d   s p l i c e   f a t i g u e   c h a r a c t e r i s t i c s .  

The bo l t ed   s ca r f  spl ice  concept  had a f a t i g u e   l i f e   i n  
excess  of  the 60,000 hours  required  for  an  advanced trans- 
p o r t   a i r c r a f t  . 
The f a b r i c a t i o n  of a large  composite  panel  containing a 
bo l t ed  spl ice  is  f e a s i b l e .  

5.2 RECOMMENDATIONS 

The d e f i n i t i o n  of a bear ing   type   fa t igue   fa i lure   should  
be   inves t iga ted .  

The use  of  proof-loading  to  censor weak art icles and 
e x t e n d   t h e   t i m e - t o - f i r s t   f a i l u r e   i n  a population  should 
be  examined. 
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3 .  Differen t   types   o f   fas teners   for   composi te   mater ia l s  
should  be  invest igated  under   both s ta t ic  and   fa t igue  
loadings.  

4 .  An inves t iga t ion   o f   acce l e ra t ed   ve r sus  real-time f a t i g u e  
t e s t ing   shou ld  be  conducted. 

5. The effects of a high  humidity  environment  on s ta t ic  
s t r e n g t h   a n d   f a t i g u e  l i f e  of bo l t ed   j o in t s   shou ld  be 
i n v e s t i g a t e d .  

6 .  New concep t s   fo r   bo l t ed   j o in t s   such  as s o f t e n i n g   s t r i p s  
fo r   r educ ing   t he  stress concent ra t ion   should   be   inves t i -  
ga ted  . 
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